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A mathematical model of transfer of radionuclides in a porous medium has been considered. The analytical
solution for this model has been obtained in a generalized form suitable for practical use. A procedure which
makes it possible to determine the time of attainment of the maximum concentration by the radionuclides and
the coordinates of the zone of influence of the radioactive contamination source has been proposed. The Padé
approximation of the scaled error function has been obtained; it can be employed in solving a wide range of
problems of heat and mass transfer.

In evaluations of the safety of burial sites of radioactive waste, one often assumes that the effective individual
equivalent irradiation dose is absorbed by man only when he drinks contaminated water. In this case it becomes topi-
cal to predict the state of ground water in the zone of influence of storages for the entire period of their potential haz-
ard. The concentrations and flows of radionuclides in aqueous media are employed as the safety indicators. The
problem of search for the influence zone is in turn reduced to determination of the coordinates of the boundary of the
region at which the concentration of the radionuclide in water is lower than the Republic allowable levels (RALs) or
is equal to it.

Study of the processes and parameters of mass transfer in water-bearing strata is based on the laws of the the-
ory of migration of underground water, which provides a physicomathematical description of different mechanisms of
complex processes of hydrodynamic and physicochemical character.

Migration of chemical components in water-bearing strata occurs within the framework of convective-diffusion
processes (with allowance for the mechanism of gravitational differentiation) on which the processes of physicochemi-
cal transformations in underground water and those of interaction with enclosing rocks are imposed, and in the general
case it is determined by:

(1) the indices of convective (filtration) transfer — filtration rate and active porosity (fracturing);
(2) the intensity of gravitational differentiation of solutions in water-bearing strata;
(3) the parameters of scattering — molecular diffusion and hydrodispersion in the pore (fracture) space;
(4) the indices of heterogeneous processes of physicochemical absorption (release) of a substance (sorption,

ion exchange, dissolution, and others);
(5) the intensity of transformation (in particular, destruction) of a substance directly in the liquid phase on

long-duration migration.
Numerical modeling is undeniably of primary importance in investigation (not only in prediction) of migration

processes, since it replaces physical experiment under the conditions where the latter is either irrational or entirely im-
possible. In the latter case (if not only in it), the logic of investigations is dictated to an increasing extent by a mathe-
matical apparatus subjectively appealing to a certain group of experts rather than by the character of the actual
geological medium and the possible practical applications. As far as the existing limitations of the most widespread
modifications of this apparatus are concerned, they follow primarily from the assumption of the stationarity of a ran-
dom process which is often considered in a two-dimensional formulation, strongly distorting the resulting conclusions.

However, all this has long been known to the researchers themselves, as has been the impracticability of sup-
porting the modeling by reliable initial data.
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In the touched-upon problem of information support of the models, the situation concerning investigation of
inverse problems is no less disappointing. On the one hand, a stream of publications with constant optimism proposing
increasingly more sophisticated procedures for their solution has not become weaker. However, even though these
works did add something useful to the initial publications of ten to twenty years ago, they did this only in terms of
negative conclusions, having confirmed once again the impossibility of doing away with incorrectness based on com-
plicated formal manipulations with actual (insufficiently complete and reliable) initial data. Either by intuition or in
view of the deeper insight into the problem, practical hydrogeologists have proceeded, as previously, from the principle
"the simpler (the model and the scheme of solution of the inverse problem), the better," confining themselves, in com-
plication of the model, to the predominantly determined fragmentation of it according to the geological base and the
quality of the input information. It goes without saying that the possibilities of the so-called determined modeling (by
mutual complementing and mutual correction of the initial data of different character, say, filtration and migration
data) are by no means excluded [1].

For on-line analysis of the processes of transfer of radioactive water-soluble compounds one must have ana-
lytical solutions which show the character and laws of transfer and distribution of radioactive water-soluble compounds
in soils and grounds in addition to numerical solutions.

For this purpose, we have employed in the present work a model the basis for which is the law of conserva-
tion of mass for the process of movement of radionuclides in porous media. The model is based on analytical solution
of the convective-dispersion equation for contamination in a porous medium with the following assumptions: flow is
nonuniform and unidirectional; the zone is modeled as an isotropic homogeneous porous medium; the dispersion is
constant throughout the region; the contaminant moves as a soluble substance; the solid and liquid phases are in equi-
librium and their concentrations are related by the linear distribution coefficient Kd.

For description of the processes of migration of radionuclides in a porous medium we selected the convective-
diffusion model written for both the liquid and solid phases of the skeleton of the rock:
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Combining Eqs. (1) and (2) and employing the isotherm of sorption according to Henry (3), on condition that
the lumped parameters are constant we finally obtain
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where R = 1 + ρKd/n is the retrogression factor which determines the slowing-down of the velocity of propagation of
contamination due to the sorption processes and Def = D + ρKdDmol

 ⁄ nψ is the effective coefficient of diffusion.
From the experimental data for the coefficients of dispersion of mixtures moving in a porous medium we have

established the linear dependence of D on the velocity of the flow and the size of porous-medium particles [2, 5].
As a result of these experiments it was shown that the process of mixing of liquids is quite satisfactorily de-

scribed by the diffusion equation with a convective term; the dispersion coefficient for both gases and liquids is writ-
ten in the form D = nDfr.v

 ⁄ ψ + γV ⁄ n.
To solve Eq. (4) we introduce into consideration the similarity numbers of mass transfer in migration of ra-

dionuclides in a porous medium according to [2]: analog of the diffusion Pe′clet number u = zV/nDef, analog of the
mass-exchange relaxation Fourier number τ = tV2 ⁄ Rn2Def, analog of the rate constant of the reaction of first order β
= λn2RDef

 ⁄ V2, and dimensionless specific activity in the liquid phase S = C ⁄ C0.
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Within the framework of the assumptions made, the equation of transport of the contaminant was reduced to
dimensionless form:
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 − βS (5)

with the initial conditions S(0, τ) = exp (−βτ).
The analytical solution has been obtained with the use of the Laplace transformation [2] and it has the form
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where erfc (Y) = 1 − erf (Y) is the residual error function.
Expression (6) yields satisfactory results for Y < 3. However in evaluating the zones of influence of burial

sites of radioactive waste and propagation of radioactive contaminants, the values of Y are more than 3 as a rule.
We introduce into consideration the scaled residual error function erfcx (Y), which is defined as erfcx (Y) =

exp (Y2) erfc (Y). With this function, after simple transformations, expression (6) will take the form
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Based on the theory of analytical approximations [3], for calculation of erfcx (Y) for Y > 3 we have obtained
in this work the Padé approximation of sixth order, represented in the form
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The values of erfcx (Y) computed according to this approximation have an error of less than  10−11.
We have employed approximation by rational functions of the form of [4] for Y < 3.
For a prescribed distance from the contamination source the time of attainment of the maximum concentration

is determined from the condition 
∂S

∂τ
 = 0. Employing (6), we obtain
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Let us consider the ratio 
τ
u

 = 
t

tp.s
, where tp.s = Rtp is the calculated time of the concentration front approach-

ing the point z, tp = nz/V. We can write the relation tp.s = βτ ⁄ λ for tp.s with the use of the dimensionless parameters.

We analyze the solution obtained for the condition where t = tp.s for u = τ. We rewrite Eq. (7) for this case
in the form

S = 
1
2

 exp (− βτ) [1 + erfcx (√τ ) ] . (9)
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For a prescribed distance we can determine the time of approach of the radionuclide-contamination front tp.s
and compute the concentration of the radionuclides in water S from (9). At τ > 100, (9) with an error of less than 1%
takes the form
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The solutions obtained for the prescribed parameters enable us to evaluate the zone of influence of the radio-
active contamination source, which is determined by the distance from the source where the maximum concentration
in the aqueous solution corresponds to the RALs for a given radionuclide.

Thus, the problem is reduced to solution of the transcendental equation (8) (the values of S are computed
from (11) for τ with a fixed β and different u). The program of computations has been realized in the Microsoft Excel
environment. We have used the MATLAB mathematical system for solution in the graphic variant and for numerous
calculations.

It is well known that among the radionuclides of Chernobyl origin the greatest migration capacity is exhibited
by 90Sr with a decay constant of λ = 0.02415.

According to RALs-99, the concentration in water for this radionuclide is 0.37 Bq/liter. Let us consider the
cases where the initial concentrations take on values of 3.7 Bq/liter, 37 Bq/liter, 370 Bq/liter, and 3700 Bq/liter. The
maximum dimensionless concentrations Smax will respectively be equal to 0.1, 0.01, 0.001, and 0.0001. Based on the
solutions obtained we have calculated the basic characteristics (presented in Table 1) of migration of 90Sr.

The transition from umax to the coordinate prescribing the zone of influence of the radioactive source is de-
termined by the expression

zmax = 
umaxnDef

V
 , (12)

while conversion to the time of attainment of the maximum levels is written as

tmax = 
τmaxβ
λ

 . (13)

The dimensionless concentration for which we determine zmax can be found from the formula

Sm.al.c = 
N

KdCm.al.c
 . (14)

As an example of the employment of the results obtained in Table 1, we give calculations for specific cases.
The initial data for the radionuclide 137Cs are as follows: velocity of the moisture flow V = 2.45 m/g, effective coef-
ficient of diffusion Def = 0.41 m2/g, R = 520, active porosity n = 0.35, λ = 0.023, β = 0.1, C0 = 1000 Bq/liter,
Cm.al.c = 10 Bq/liter, Sm.al.c = 0.01, umax = 40.12, and τmax = 40.65; the data for the radionuclide 90Sr are V = 2.45
m/g, Def = 0.41 m2/g, R = 5, n = 0.35, λ = 0.02415, β = 0.001, C = 37 Bq/liter, Cm.al.c = 0.37 Bq/liter, Sm.al.c =
0.01, umax = 4398.27, and τmax = 4560.97. Employing (12) and (13), we obtain zmax = 2.35 m and τmax = 176.7 g
for 137Cs and zmax = 257.6 m and τmax = 188.9 for 90Sr.

Thus, if the initial concentration of 90Sr is thirty times lower than that of 137Cs, the zone of its influence is
two orders of magnitude larger. The smaller the generalized parameter β, all other parameters being the same, the
larger the size of the influence zone.
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TABLE 1. Coordinates and Time of Attainment of the Maximum Allowable Concentrations for Different Values of the
Parameter β for 90Sr

β Sm.al.c tp.s, year τp.s tmax, year τmax up.s umax

0.1 0.1 71.78 17.3349 75.70 18.2816 17.33 17.41
0.05 0.1 70.43 34.1626 81.82 39.5191 34.01 35.37
0.01 0.1 68.43 165.258 90.26 217.978 165.23 194.06
0.005 0.1 67.92 328.054 92.05 444.602 328.01 403.06
0.001 0.1 67.23 1623.6 94.12 2273 1623.34 2146.39

0.0005 0.1 67.06 3239 94.53 4565.8 3238.6 4369.57
0.0001 0.1 66.84 16141.9 95.03 22949.7 16138.69 22430.52

0.1 0.01 165.51 39.9707 165.51 40.65 39.97 40.12
0.05 0.01 164.54 79.4728 169.46 81.8492 79.46 79.66
0.01 0.01 163.17 394.056 182.95 441.824 394.0 414.57
0.005 0.01 162.84 786.517 185.71 896.979 786.39 846.81
0.001 0.01 162.39 3921.72 188.86 4560.97 3921.0 4398.27

0.0005 0.01 162.28 7838.12 189.49 9152.37 7836.75 8896.04
0.0001 0.01 162.13 39154.4 190.24 45943 39148.7 45247.96

0.1 0.001 260.25 62.8504 260.35 63.50 62.83 63.0
0.05 0.001 259.40 125.29 260.80 125.966 125.27 126.2
0.01 0.001 258.30 623.795 276.04 666.637 623.69 638.78
0.005 0.001 258.03 1246.28 279.64 1350.66 1246.09 1296.27
0.001 0.001 257.67 6222.73 283.71 6851.6 6221.73 6665.13

0.0005 0.001 257.58 12441.1 284.52 13742.3 12439.31 13444.95
0.0001 0.001 257.47 62179 285.47 68941 62168.68 68121.77

0.1 0.0001 355.17 85.9016 360.31 87.0149 85.76 85.9
0.05 0.0001 354.48 171.214 362.38 175.03 171.19 171.53
0.01 0.0001 353.53 853.775 369.34 891.956 853.63 864.80
0.005 0.0001 353.30 1706.44 373.72 1805.07 1706.15 1748.50
0.001 0.0001 352.99 8524.71 378.63 9143.91 8523.29 8939.4

0.0005 0.0001 352.92 17046 379.60 18334.7 17043.01 18005.04
0.0001 0.0001 352.81 85203.6 380.63 91922.1 85190.0 91000.0

TABLE 2. Values of the Approximation Coefficients for Different β for umax and τmax

β b⋅10−4 c⋅10−4 d e
Standard

deviation, 10−6

0.1 2.0478257 44.324 –0.9632652 –0.498 1.429
0.05 –5.8704338 –115.525 –1.0532004 –0.6025 1.592
0.01 2.5802604 70.541 –0.9185112 –0.2086 1.610

0.005 2.0068692 54.65 –0.933288 –0.1602 1.558
0.001 2.3986865 47.266 –0.9542312 –0.07294 1.429

0.0005 0.76861726 21.2 –0.9711187 –0.0616 0.3077
0.0001 0.70923031 15.114 –0.9831404 –0.02786 0.2287

β b1 c1 d1 e1

0.1 –2.3208692 13.203 –0.9537831 –0.378 1.017
0.05 –49.011 –655.897 –1.1901479 –0.477 13.17
0.01 –13.864 –182.576 –1.0466606 –0.15065 11.61

0.005 0.41636123 11.977 –0.9754291 –0.02925 1.150
0.001 0.1722904 4.9095629 –0.990787 –0.011222 0.1543

0.0005 0.11467824 3.2865591 –0.9939253 –0.00754 0.04130

0.0001 0.36737994 5.7677462 –0.9957515 6.83⋅10−4 0.1023
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By employing the data of Table 1, we can solve, for different radionuclides, the problem of search for the
influence zone and of determination of the coordinates of the boundary of the region at which the concentration of the
radionuclide is lower than or equal to RAL-99.

The analysis of the results in Table 1 has shown that the products umaxβ and τmaxβ are approximated by the
expression

umaxβ = bx
3
 + cx

2
 + dx + e , (15)

τmaxβ = b1x
3
 + c1x

2
 + d1x + e1 , (16)

where x = ln (Sm.al.c), and the values of the coefficients are presented in Table 2.
By employing (15) and (16) for prescribed Sm.al.c at two values of β, we can obtain the required solution for

the selected parameter β using interpolation.
Thus, the analytical solution of the equation of convective diffusion of radionuclides with allowance for the

kinetics of sorption and the exact solutions presented enable one to relate in explicit form the hydrodispersion, the ve-
locity of a liquid flow, and the characteristics of transfer and mass exchange of radioactive water-soluble compounds
and to determine the zone of influence of the radioactive contamination source and the time of potential hazard of this
zone; also, they can be useful in developing experimental methods of determination of the characteristics of transfer
and mass exchange of radioactive water-soluble compounds.

NOTATION

n, active porosity of the skeleton of the rock, m3/m3; C, specific activity of the radionuclide in the liquid
phase, Bq/liter; D, coefficient of dispersion in the z direction, m2/year; V, velocity of the flow, m/year; λ, decay con-
stant of the radionuclide, 1/year; α, coefficient of mass transfer to the liquid, 1/sec; F(N), sorption isotherm; N, activity
of the radionuclide in the solid phase, Bq/kg; Dm, coefficient of molecular diffusion in the skeleton of the rock,
m2/year; Dfr.v, coefficient of molecular diffusion in the free volume, m2/year; ψ, crookedness coefficient characterizing
the inhomogeneity of a porous medium; ρ, density of the skeleton of the rock, kg/cm3; Def, effective diffusion coeffi-
cient, m2/year; z, coordinate in the direction of motion of the liquid; t, time; u, dimensionless coordinate; τ, dimen-
sionless time; S, dimensionless specific activity; γ, hydrodispersion coefficient, m; Kd, coefficient of distribution of a
water-soluble compound; R, retrogression factor; β, dimensionless constant of decay of the radionuclide; b, c, d, e,
b1, c1, d1, and e1, approximation coefficients; V and x, parameters of the functions. Subscripts: ef, effective; m, mo-
lecular; 0, initial; fr.v, free volume; p, piston-type; p.s, piston-type with allowance for sorption; max, maximum; m.al.c,
maximum allowable concentration.
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